Selecting optimal color palettes
library(tidyverse)
library(sf)
library(tidycensus)
library(RColorBrewer)
library(patchwork)
# useful on MacOS to speed up rendering of geom_sf() objects
if (!identical(getOption("bitmapType"), "cairo") && isTRUE(capabilities()[["cairo"]])) {
options(bitmapType = "cairo")
}
options(digits = 3)
set.seed(1234)
theme_set(theme_minimal())
Selection of your color palette is perhaps the most important decision to make when drawing a choropleth. By default, ggplot2
picks evenly spaced hues around the Hue-Chroma-Luminance (HCL) color space:1
ggplot2
gives you many different ways of defining and customizing your scale_color_
and scale_fill_
palettes, but will not tell you if they are optimal for your specific usage in the graph.
Color Brewer
Color Brewer is a diagnostic tool for selecting optimal color palettes for maps with discrete variables. The authors have generated different color palettes designed to make differentiating between categories easy depending on the scaling of your variable. All you need to do is define the number of categories in the variable, the nature of your data (sequential, diverging, or qualitative), and a color scheme. There are also options to select palettes that are colorblind safe, print friendly, and photocopy safe. Depending on the combination of options, you may not find any color palette that matches your criteria. In such a case, consider reducing the number of data classes.
Sequential
Sequential palettes work best with ordered data that progresses from a low to high value.
display.brewer.all(type = "seq")
Diverging
Diverging palettes work for variables with meaningful mid-range values, as well as extreme low and high values.
display.brewer.all(type = "div")
Qualitative
Qualitative palettes are best used for nominal data where there is no inherent ordering to the categories.
display.brewer.all(type = "qual")
Viridis
The viridis
package imports several color palettes for continuous variables from the matplotlib
package in Python. These palettes have been tested to be colorful, perceptually uniform, robust to colorblindness, and pretty. To use these with ggplot2
, use scale_color_viridis()
and scale_fill_viridis()
:
library(viridis)
viridis_base <- ggplot(state_inc) +
geom_sf(aes(fill = estimate)) +
labs(
title = "Median household income, 2016",
subtitle = "Palette: viridis",
caption = "Source: 2016 American Community Survey",
fill = NULL
) +
scale_fill_viridis(labels = scales::dollar)
viridis_base
viridis_base +
scale_fill_viridis(option = "cividis", labels = scales::dollar) +
labs(subtitle = "Palette: cividis")
viridis_base +
scale_fill_viridis(option = "inferno", labels = scales::dollar) +
labs(subtitle = "Palette: inferno")
viridis_base +
scale_fill_viridis(option = "magma", labels = scales::dollar) +
labs(subtitle = "Palette: magma")
viridis_base +
scale_fill_viridis(option = "plasma", labels = scales::dollar) +
labs(subtitle = "Palette: plasma")
Session Info
devtools::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.0.4 (2021-02-15)
## os macOS Big Sur 10.16
## system x86_64, darwin17.0
## ui X11
## language (EN)
## collate en_US.UTF-8
## ctype en_US.UTF-8
## tz America/Chicago
## date 2021-05-25
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## package * version date lib source
## assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.0)
## backports 1.2.1 2020-12-09 [1] CRAN (R 4.0.2)
## blogdown 1.3 2021-04-14 [1] CRAN (R 4.0.2)
## bookdown 0.22 2021-04-22 [1] CRAN (R 4.0.2)
## broom 0.7.6 2021-04-05 [1] CRAN (R 4.0.4)
## bslib 0.2.5 2021-05-12 [1] CRAN (R 4.0.4)
## cachem 1.0.5 2021-05-15 [1] CRAN (R 4.0.2)
## callr 3.7.0 2021-04-20 [1] CRAN (R 4.0.2)
## cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.0.0)
## class 7.3-19 2021-05-03 [1] CRAN (R 4.0.2)
## classInt 0.4-3 2020-04-07 [1] CRAN (R 4.0.0)
## cli 2.5.0 2021-04-26 [1] CRAN (R 4.0.2)
## colorspace 2.0-1 2021-05-04 [1] CRAN (R 4.0.2)
## crayon 1.4.1 2021-02-08 [1] CRAN (R 4.0.2)
## DBI 1.1.1 2021-01-15 [1] CRAN (R 4.0.2)
## dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.0.4)
## desc 1.3.0 2021-03-05 [1] CRAN (R 4.0.2)
## devtools 2.4.1 2021-05-05 [1] CRAN (R 4.0.2)
## digest 0.6.27 2020-10-24 [1] CRAN (R 4.0.2)
## dplyr * 1.0.6 2021-05-05 [1] CRAN (R 4.0.2)
## e1071 1.7-6 2021-03-18 [1] CRAN (R 4.0.2)
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.0.2)
## evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.0)
## fansi 0.4.2 2021-01-15 [1] CRAN (R 4.0.2)
## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.2)
## forcats * 0.5.1 2021-01-27 [1] CRAN (R 4.0.2)
## foreign 0.8-81 2020-12-22 [1] CRAN (R 4.0.4)
## fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.2)
## generics 0.1.0 2020-10-31 [1] CRAN (R 4.0.2)
## ggplot2 * 3.3.3 2020-12-30 [1] CRAN (R 4.0.2)
## glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
## gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.0)
## haven 2.4.1 2021-04-23 [1] CRAN (R 4.0.2)
## here 1.0.1 2020-12-13 [1] CRAN (R 4.0.2)
## hms 1.1.0 2021-05-17 [1] CRAN (R 4.0.4)
## htmltools 0.5.1.1 2021-01-22 [1] CRAN (R 4.0.2)
## httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.0.2)
## jsonlite 1.7.2 2020-12-09 [1] CRAN (R 4.0.2)
## KernSmooth 2.23-20 2021-05-03 [1] CRAN (R 4.0.2)
## knitr 1.33 2021-04-24 [1] CRAN (R 4.0.2)
## lattice 0.20-44 2021-05-02 [1] CRAN (R 4.0.2)
## lifecycle 1.0.0 2021-02-15 [1] CRAN (R 4.0.2)
## lubridate 1.7.10 2021-02-26 [1] CRAN (R 4.0.2)
## magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.0.2)
## maptools 1.1-1 2021-03-15 [1] CRAN (R 4.0.2)
## memoise 2.0.0 2021-01-26 [1] CRAN (R 4.0.2)
## modelr 0.1.8 2020-05-19 [1] CRAN (R 4.0.0)
## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.0)
## patchwork * 1.1.1 2020-12-17 [1] CRAN (R 4.0.2)
## pillar 1.6.1 2021-05-16 [1] CRAN (R 4.0.4)
## pkgbuild 1.2.0 2020-12-15 [1] CRAN (R 4.0.2)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.0)
## pkgload 1.2.1 2021-04-06 [1] CRAN (R 4.0.2)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.0)
## processx 3.5.2 2021-04-30 [1] CRAN (R 4.0.2)
## proxy 0.4-25 2021-03-05 [1] CRAN (R 4.0.2)
## ps 1.6.0 2021-02-28 [1] CRAN (R 4.0.2)
## purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.0.0)
## R6 2.5.0 2020-10-28 [1] CRAN (R 4.0.2)
## rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.0.2)
## RColorBrewer * 1.1-2 2014-12-07 [1] CRAN (R 4.0.0)
## Rcpp 1.0.6 2021-01-15 [1] CRAN (R 4.0.2)
## readr * 1.4.0 2020-10-05 [1] CRAN (R 4.0.2)
## readxl 1.3.1 2019-03-13 [1] CRAN (R 4.0.0)
## remotes 2.3.0 2021-04-01 [1] CRAN (R 4.0.2)
## reprex 2.0.0 2021-04-02 [1] CRAN (R 4.0.2)
## rgdal 1.5-23 2021-02-03 [1] CRAN (R 4.0.2)
## rlang 0.4.11 2021-04-30 [1] CRAN (R 4.0.2)
## rmarkdown 2.8 2021-05-07 [1] CRAN (R 4.0.2)
## rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.2)
## rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.2)
## rvest 1.0.0 2021-03-09 [1] CRAN (R 4.0.2)
## sass 0.4.0 2021-05-12 [1] CRAN (R 4.0.2)
## scales 1.1.1 2020-05-11 [1] CRAN (R 4.0.0)
## sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.0)
## sf * 0.9-8 2021-03-17 [1] CRAN (R 4.0.2)
## sp 1.4-5 2021-01-10 [1] CRAN (R 4.0.2)
## stringi 1.6.1 2021-05-10 [1] CRAN (R 4.0.2)
## stringr * 1.4.0 2019-02-10 [1] CRAN (R 4.0.0)
## testthat 3.0.2 2021-02-14 [1] CRAN (R 4.0.2)
## tibble * 3.1.1 2021-04-18 [1] CRAN (R 4.0.2)
## tidycensus * 0.11.4 2021-01-20 [1] CRAN (R 4.0.2)
## tidyr * 1.1.3 2021-03-03 [1] CRAN (R 4.0.2)
## tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.0.2)
## tidyverse * 1.3.1 2021-04-15 [1] CRAN (R 4.0.2)
## tigris 1.4 2021-05-16 [1] CRAN (R 4.0.4)
## units 0.7-1 2021-03-16 [1] CRAN (R 4.0.2)
## usethis 2.0.1 2021-02-10 [1] CRAN (R 4.0.2)
## utf8 1.2.1 2021-03-12 [1] CRAN (R 4.0.2)
## uuid 0.1-4 2020-02-26 [1] CRAN (R 4.0.0)
## vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.0.2)
## withr 2.4.2 2021-04-18 [1] CRAN (R 4.0.2)
## xfun 0.23 2021-05-15 [1] CRAN (R 4.0.2)
## xml2 1.3.2 2020-04-23 [1] CRAN (R 4.0.0)
## yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.0)
##
## [1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library
- Check out chapter 6.6.2 in
ggplot2
: Elegant Graphics for Data Analysis for a much more thorough explanation of the theory behind this selection process ^